In the last few years, graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. This emerging field has witnessed an extensive growth of promising techniques that have been applied with success to computer science, mathematics, biology, physics and chemistry. But for any successful field to become mainstream and reliable, benchmarks must be developed to quantify progress. This led us in March 2020 to release a benchmark framework that i) comprises of a diverse collection of mathematical and real-world graphs, ii) enables fair model comparison with the same parameter budget to identify key architectures, iii) has an open-source, easy-to-use and reproducible code infrastructure, and iv) is flexible for researchers to experiment with new theoretical ideas. As of December 2022, the GitHub repository has reached 2,000 stars and 380 forks, which demonstrates the utility of the proposed open-source framework through the wide usage by the GNN community. In this paper, we present an updated version of our benchmark with a concise presentation of the aforementioned framework characteristics, an additional medium-sized molecular dataset AQSOL, similar to the popular ZINC, but with a real-world measured chemical target, and discuss how this framework can be leveraged to explore new GNN designs and insights. As a proof of value of our benchmark, we study the case of graph positional encoding (PE) in GNNs, which was introduced with this benchmark and has since spurred interest of exploring more powerful PE for Transformers and GNNs in a robust experimental setting.
translated by 谷歌翻译
众所周知,即使通过核心点之间捕获数据点之间的相似性,也可以通过捕获相似性来提供准确的预测和不确定性估计,以提供准确的预测和不确定性估计。然而,传统的GP内核在捕获高维数据点之间的相似性时不是非常有效的。神经网络可用于学习在高维数据中编码复杂结构的良好表示,并且可以用作GP内核的输入。然而,神经网络的巨大数据要求使得这种方法在小数据设置中无效。为了解决代表学习和数据效率的冲突问题,我们建议通过使用概率神经网络来学习概率嵌入的深核。我们的方法将高维数据映射到低维子空间中的概率分布,然后计算这些分布之间的内核以捕获相似性。要启用端到端学习,我们可以推导出用于培训模型的功能梯度血清过程。各种数据集的实验表明,我们的方法在监督和半监督设置中占GP内核学习中的最先进。我们还将我们的方法扩展到其他小型数据范例,例如少量分类,在迷你想象网和小熊数据集上以前的方式胜过先前的方法。
translated by 谷歌翻译
We present Masked Audio-Video Learners (MAViL) to train audio-visual representations. Our approach learns with three complementary forms of self-supervision: (1) reconstruction of masked audio and video input data, (2) intra- and inter-modal contrastive learning with masking, and (3) self-training by reconstructing joint audio-video contextualized features learned from the first two objectives. Pre-training with MAViL not only enables the model to perform well in audio-visual classification and retrieval tasks but also improves representations of each modality in isolation, without using information from the other modality for fine-tuning or inference. Empirically, MAViL sets a new state-of-the-art on AudioSet (53.1 mAP) and VGGSound (67.1% accuracy). For the first time, a self-supervised audio-visual model outperforms ones that use external supervision on these benchmarks. Code will be available soon.
translated by 谷歌翻译
Athletes routinely undergo fitness evaluations to evaluate their training progress. Typically, these evaluations require a trained professional who utilizes specialized equipment like force plates. For the assessment, athletes perform drop and squat jumps, and key variables are measured, e.g. velocity, flight time, and time to stabilization, to name a few. However, amateur athletes may not have access to professionals or equipment that can provide these assessments. Here, we investigate the feasibility of estimating key variables using video recordings. We focus on jump velocity as a starting point because it is highly correlated with other key variables and is important for determining posture and lower-limb capacity. We find that velocity can be estimated with a high degree of precision across a range of athletes, with an average R-value of 0.71 (SD = 0.06).
translated by 谷歌翻译
In this technical note, we introduce an improved variant of nearest neighbors for counterfactual inference in panel data settings where multiple units are assigned multiple treatments over multiple time points, each sampled with constant probabilities. We call this estimator a doubly robust nearest neighbor estimator and provide a high probability non-asymptotic error bound for the mean parameter corresponding to each unit at each time. Our guarantee shows that the doubly robust estimator provides a (near-)quadratic improvement in the error compared to nearest neighbor estimators analyzed in prior work for these settings.
translated by 谷歌翻译
考虑到安全至关重要自动化系统中情境意识的功能,对驾驶场景的风险及其解释性的感知对于自主和合作驾驶特别重要。为了实现这一目标,本文提出了在驾驶场景中的共同风险定位的新研究方向及其作为自然语言描述的风险解释。由于缺乏标准基准,我们收集了一个大规模数据集,戏剧性(带有字幕模块的驾驶风险评估机制),该数据集由17,785个在日本东京收集的互动驾驶场景组成。我们的戏剧数据集适用于带有相关重要对象的驾驶风险的视频和对象级别的问题,以实现视觉字幕的目标,作为一种自由形式的语言描述,利用封闭式和开放式响应用于多层次问题,可以用来使用这些响应,可用于在驾驶场景中评估一系列视觉字幕功能。我们将这些数据提供给社区以进行进一步研究。使用戏剧,我们探索了在互动驾驶场景中的联合风险定位和字幕的多个方面。特别是,我们基准了各种多任务预测架构,并提供了关节风险定位和风险字幕的详细分析。数据集可在https://usa.honda-ri.com/drama上获得
translated by 谷歌翻译
自2016年成立以来,Alexa奖计划使数百名大学生能够通过Socialbot Grand Challenge探索和竞争以发展对话代理商。挑战的目的是建立能够与人类在流行主题上连贯而诱人的代理人20分钟,同时达到至少4.0/5.0的平均评分。但是,由于对话代理商试图帮助用户完成日益复杂的任务,因此需要新的对话AI技术和评估平台。成立于2021年的Alexa奖Taskbot Challenge建立在Socialbot Challenge的成功基础上,通过引入交互式协助人类进行现实世界烹饪和做自己动手做的任务的要求,同时同时使用语音和视觉方式。这项挑战要求TaskBots识别和理解用户的需求,识别和集成任务和域知识,并开发新的方式,不分散用户的注意力,而不必分散他们的任务,以及其他挑战。本文概述了Taskbot挑战赛,描述了使用Cobot Toolkit提供给团队提供的基础架构支持,并总结了参与团队以克服研究挑战所采取的方法。最后,它分析了比赛第一年的竞争任务机器人的性能。
translated by 谷歌翻译
本文描述了对象目标导航任务的框架,该任务要求机器人从随机的启动位置查找并移至目标对象类的最接近实例。该框架使用机器人轨迹的历史记录来学习空间关系图(SRG)和图形卷积网络(GCN)基于基于不同语义标记区域的可能性以及这些区域不同对象类别的发生的可能性。为了在评估过程中定位目标对象实例,机器人使用贝叶斯推理和SRG估计可见区域,并使用学习的GCN嵌入来对可见区域进行排名,并选择接下来的区域。
translated by 谷歌翻译
我们提出了一种方法,用于在主动电分布网络中考虑使用脆弱节点识别的最佳DERS分配,并将这些节点命名为关键节点。这些关键节点的功率变化将显着影响其他链接节点的运行,因此这些节点适合使用,并且认为最适合DERS放置。我们在标准的IEEE-123测试馈线系统中证明了我们的方法评估。最初,我们使用图理论将分布系统划分为最佳微电网网络。使用图神经网络体系结构对分区进行了验证,以适当形成微电网。此外,使用有效的可测量分析(例如Granger因果关系),我们确定了分区的微电网中的关键节点和在这些节点上的DERS放置,从而提高了网络可靠性和弹性。此外,为了验证系统性能和能量弹性,我们计算了微电网网络的渗透阈值,该网络指示了在这些关键节点上掺入DER后系统弹性。这项提出的有关首先的方法可确保通过分布网络中数据驱动的分析方法来确定有效的微电网分配,关键节点的识别,最佳DERS分配和系统弹性评估。
translated by 谷歌翻译
最近,电分配系统被分布式能源(DER)广泛渗透,以满足能量需求,以一般的看法,即增强系统的弹性。但是,由于其间歇性可用性,天气状况的动态,非线性,复杂性的引入等各种因素,这可能是不利的。这需要对我们的方法在这里提出的对系统弹性的详细理解。我们介绍了一种使用复杂网络理论的方法,以确定与太阳能PV生成在各种不良配置下合并时分配系统的弹性。获得了不同条件的复杂相关网络,并计算了各种网络参数以识别这些网络的弹性。所提出的方法可以确定系统中太阳能电池板的托管能力,同时在不同的不需要条件下保持弹性有助于获得系统中太阳能电池板的最佳分配拓扑。所提出的方法还标识了对变化高度敏感的关键节点,并可能将系统推向非弹性。该框架在IEEE-123测试馈线系统上使用了使用GridLab-D生成的时间序列数据,并使用复杂的网络和机器学习模型进行了多种分析。
translated by 谷歌翻译